Let me begin by summarizing what I had to say yesterday, the main thrust of which was to identify patterns in today’s art-making world that could be attributable directly to various aspects of the cultural context. To begin with, I suggested that one of the most potent forces shaping the culture today is the rapid proliferation of advanced technologies. Technology always has played its part in shaping the culture, of course, and it has always developed exponentially. But most of mankind’s history has been spent on the long, shallow foot of an exponential curve, while now the curve is rising rapidly and will continue to get steeper – at an increasing rate – in the next decades. Some writers are even predicting a coming singularity, meaning that when the curve becomes steep enough, when change becomes virtually instantaneous, the culture will spin off into an entirely unpredictable state.

We saw also that a complementary force in the shaping of the culture, mass-marketing, kicked in a bit more than a hundred years ago, at a time when urban populations were growing rapidly. And it was directed then precisely at the marketing of one technology in particular, photography, that catered directly to an urge so universal that it rates a taboo in the ten commandments – the urge to make images. The key to marketing photography on a mass scale was recognizing the fundamental ineptness of the user; the need to make the technology so simple that anyone could do it and so well-protected that the inept user couldn’t damage it. And thus was born the first fool-proof technology.

Not all technology after this point was fool-proof, however. There is a sharp division between the technologies advancing up curve, which are largely motivated by the desire to do things that had never been possible before, and the technologies motivated by a desire for convenience. The first class is characterized by small markets, high costs and the need for expertise in their operation. The second class is characterized by very large markets leading to relatively low costs and, by definition, the removal of expertise as a factor in their operation.

One might speculate that there would have been a permanent void between these two extremes but for developments that led to the mass-marketing of the computer, which we have to see as the core technology of the late twentieth century. It’s extraordinary power and its ubiquity arises from the fact that it can run programs; every different program turns it effectively into a different machine and each different machine can serve a different community of users, each of them with highly specialized needs.

All devices do best the things they were designed to do and, given the continuing need to protect increasingly complex software packages from misuse, these highly specialized packages can’t effectively do anything they weren’t designed for. So they don’t adapt well to the artist’s needs, as some more traditional technologies have, and the idea of writing specialized software for the artist in a mass-market context is neither potentially profitable, nor, indeed, possible. Unlike other fields, where there can be complete consensus on what the professional user needs, there is not one single thing that we could identify as necessary for all professional artists.

So here we are, artists all, with an array of highly specialized physical devices that require high levels of expertise but aren’t available, a large array of almost equally specialized software packages that aren’t designed to do anything we might want to do and don’t have anywhere for expertise to be applied, and a warehouse full of new toys – cell-phones, digital cameras, -- fitting the original fool-proof concept.

The only exception to this unpromising picture, I suggested, at least as far as using the computer is concerned, is the extremely specialized software package that allows one to write specialized software packages. Given a modest level of expertise in one of the programming languages, the artist could write his own specialized package, create his own technology. Some of us do. However, it’s asking a lot to expect young artists who have grown up in this mass-market culture to repudiate the culture’s central doctrine; that everything is available without effort and that the inner workings of the new toys are much too difficult to grasp.

On, then, to the central theme of this talk, which is to provide a counter-example as a possible road into the future. As I concluded yesterday, my own choice has been to reject the role of fool playing with the fool-proof toys of a short-attention-span culture and to insist upon my right to apply traditional levels of expertise to the writing of programs – just one program, actually, that has developed steadily over a thirty-plus years – to do exactly want I want it to do. What I want to do, in fact, is to develop some level of autonomy for the program, and in doing so to push my understanding of art and what is produced as art beyond anything I could have achieved by other means.

Set against current trends in art-making that’s an unconventional position and

I want to show that it’s a viable one; and to show in some detail what kind of gains one might hope for by adopting it.

Actually, I should modify slightly what I just said; the truth is that I never rejected the status of fool; it simply wasn’t there to be rejected when I started thirty-six years ago. There never was a choice to be made between using canned programs and writing my own, simply because there weren’t any canned programs. It was still years before the computer became a neat little box sitting on the desk. The first one I met – or rather, never met, because it was locked away from the destructive fingers of stupid users -- was a large air conditioned room full of boxes of equipment. There were no programming manuals for idiots, there were only incomprehensible reference manuals written, as far as I was able to tell, only for people who already knew everything they needed to know. There was no interactive computing; there was batch-processing, which meant that you punched your program onto IBM cards, a line to a card, and submitted the whole deck of cards to an operator, who fed them to the machine. You would come back the following day to collect your cards and, hopefully, some output; but as often as not all you would get would be a cryptic message about a missing semi-colon on line seventy-three. There were consultants to explain what the message meant and why your program didn’t run, but the explanation tended to be that you were stupid and really ought to leave the computer for the smart people who had serious reasons for being there.

Taken together – the clumsy card punches, the slow turnaround of batch processing, the unhelpfulness of the consultants and, let me not forget, my own stupidity -- the result was that it could frequently take several days to accomplish something you could do now in a few minutes.

But, perhaps the most important of all for the artist new to this strange world, there were no precedents and no permissions. Almost nobody from the arts had been down this particular road and there was nothing you could point to as evidence that computing had anything to offer, nobody to tell you it was ok.

In case you think I’m trying to impress you with how dreadful those early days were, let me correct the impression; I’m simply trying to make it clear that acquiring expertise wasn’t an option, it was a necessity. I was obliged to learn a new technology, certainly, but that was exactly what I’d done when I learned to paint, exactly what I’d done when I was learning print-making and photography; exactly what I thought an artist needed to do if he was to be fully in control of his own development. I’m pretty sure I wouldn’t have found anything interesting in the computer if it had been defined then, as it is defined in the mass-market now, as a box for running somebody else’s canned programs.

Having said all of that, however, and whether it was hard or simple, convenient or frustrating, bear in mind that I was not coming to computing as a student looking for a place to hang his hat; I came to it as a mature artist with twenty years of painting behind me and a hard-won reputation at risk. And it was clear from the start that using this strange device would require a significant reconsideration of how I thought of myself as an artist. That certainly wasn’t something one would undertake if there weren’t very good reasons. What were my reasons?

For me, the central mystery of painting has always been the strange fact that marks on a flat surface can refer to objects and events in a real or an imagined world; representation, in the broadest sense of the word. That was still the case when I went to California in 1968, but I took with me a growing sense that after twenty years of painting I didn’t understand that mystery any more than I had when I started; a growing intuition that there had to be a way of coming at an understanding from a different direction if only I could find it.

Yet I didn’t come to computing, deliberately and purposefully, to seek that direction. Computing came to me, rather, in the form of a graduate student in the music department who offered to teach me programming, and my initial engagement resulted more from curiosity than anything else. Even after I’d begun, it still took about six months before it started to occur to me that, if I could write a program to do some of the things human beings do when they make representations, then I might possibly learn more about the nature of representation than I ever had done by painting.

Perhaps, I began to think, programming could provide precisely the alternative direction I needed.

And it did. The AARON program dates officially from around 1972, but it was preceded by my attempts to model some very general features of cognition and the way they influence what one does in making images: (*** 1 ***) the ability to distinguish between closed forms and open forms, for example, and between figure and ground. And in implementing those abilities I had chosen also to adopt the feedback strategies that are characteristic of so much human behavior, modeling freehand drawing (*** 2 ***) as a step-wise procedure for getting from one place to another place, rather than using the mathematical curve-producing functions that were already becoming the signature of early computer art.

I thought I had reason to be encouraged by the results of these early experiments (*** 3 ***) because the public response they elicited indicated that they were, indeed, being viewed as images; even images of quite specific events and places that neither the program nor its author knew anything about. I recall one person, for example, commenting that I must live in San Francisco, because, she said, part of a drawing was clearly a representation of a San Francisco landmark, Twin Peaks.

Out of this early work came the central idea that has really been at the root of everything I’ve done since; that I could externalize what I knew about art-making into a form where a machine could do it; eventually, even, that it should be possible for a computer program to have enough knowledge to function autonomously as an artist. It was, I thought, a logical outcome of my growing involvement with computers and, most particularly, with the field of artificial intelligence. At least, that’s how it has seemed to me until quite recently;
It’s only recently that I’ve come to realize that the seeds of this preoccupation were already planted and growing at least a decade before I met my first computer. (As I said, there is a difference between having a past and not having a past; that one single fact puts me in a quite different place from people who weren’t making art, or anything much else, ten years before they met their first computers.) At that time I was making paintings (*** 4 ***) that looked like fragments of things that didn’t really exist, and I was uncomfortably aware of my need to invent those things. I came to think that one couldn’t go on inventing forever; a belief that was confirmed for me one day when I saw an exhibition of late Kandinskys that I thought looked like a lifeless rehash of the exuberant early abstractions. Whether that judgment was correct, or whether I would reach the same conclusion today, is of no consequence, of course; it was my own disquiet I was facing, not Kandinsky’s.

As you can see, my antipathy to the fifteen-minute model of art-making goes back a long way.

So the notion that, instead of inventing the subject matter and making the paintings myself, I could write the rules that would allow the painting to paint itself, so to speak; that notion simply emerged from the growing feeling that there had to be ways to make art that didn’t require continuous invention. One result (*** 5 ***) was the series of paintings with which I represented the UK in the Venice Biennale in 1965; (*** 6 ***) four years before I wrote my first computer program and another four before, as a guest scholar at the AI Lab at Stanford University, I began work on AARON, the program that has occupied me continuously ever since.

In case there’s any confusion about the nature of my own expertise in this enterprise, I want to make it clear that in trying to model cognitive behavior in a computer program my expertise – such as it was at the time – was in programming, not in cognition. I was not a cognitive scientist doing research, I was an artist attempting to give form to what my own cognitive experience had told me. In fact, I made some wrong assumptions about cognition that led to the end of that first period of AARON’s development; I thought that there must be a virtually endless supply of what I thought of as cognitive primitives, in uncovering and modeling which I would be able to continue AARON’s development indefinitely. That proved not to be the case; by 1980 (*** 7 ***) it was becoming clear that I wasn’t going to find any more primitives. They simply weren’t there to find. I concluded that the marvel of the cognitive system rested on the fact that it developed in a real-world context, not on having an enormous range of primitives to apply, and if I wanted to move on I would have to supply AARON with knowledge of the real world that it could make drawings that represented the things it knew about rather than evoking for the viewer things it didn’t know about.
But before I got to that step I made a single change to AARON’s way of handling the picture plane as a whole that made an astonishing difference to the way its images were read. In the earliest versions of the program I had avoided a central feature of vision, the fact that nearby objects occlude objects further away. Each object occupied its own space on the picture plane and AARON developed a good deal of skill in avoiding overlap. After 1980, and as a first step in modeling how cognition dealt with the visual world, (*** 8 ***) I introduced occlusion, with the result that where it’s earlier images evoked different things for different viewers, the new ones were read by almost everyone as landscapes or cityscapes filled with people.
I want to fast-forward, now, to the mid-eighties and to what is probably the most illuminating development of all with respect to the issue of expertise.

AARON was by well-established by that time as a drawing program with a string of exhibitions (*** 9 ***) to its credit and mine, having developed into a knowledge-based program with enough knowledge to make representational drawings (*** 10 ***) of the few real-world objects it knew about. For my part, I’d developed a strong urge to demystify what it was doing; feeling that, if I was doing something as far outside common experience as having a computer program make original art, then I owed some explanation. In consequence, all of AARON’s exhibitions were designed to be active, (*** 11 ***) in the sense that the audience could see the drawings actually being made on the various drawing machines I’d built for the purpose. And in several shows I enlarged drawings up to mural scale and colored them by hand. In fact, (*** 12 ***) the mural scale backdrop of the Tate show was painted as part of an earlier exhibition at the Brooklyn Museum. I had to do the coloring myself, because the one thing AARON didn’t know anything about was color.

At that time, and following that same urge to demystify, I always spent a great deal of time talking to people during exhibitions and it was in a conversation during this show at the Tate that someone remarked to me that it seemed sad that a program capable of making AARON’s drawings should need me to do the coloring. I agreed. Color had always been important to me as a painter and I enjoyed my own coloring part of the collaboration; but the need for the collaboration was becoming really troubling. How much of the painting process was I externalizing as long as I had to do the coloring myself? But I had no idea how to go about doing it and it was a couple of years more before I finally saw an approach.

The story of how that came about is particularly revealing, because it shows very clearly how intimate a part one’s technologies can play, both positively and negatively, in the way one defines problems and in the structure of their solutions.

There were two technological issues to be resolved before I could make a start. One was that I was developing increasingly strong reservations about the programming language I was using. Now, in theory, all programming languages are equivalent, meaning that in principle anything you can do with one you can do with another. In practice, however, the different programming languages are designed to do different things and those are the things they do most readily. The problem isn’t simply that they make other things more difficult to do, however, it’s that the language – like human languages -- imposes a particular structure on how one expresses oneself; a particular mindset concerning how one should be thinking about the task in hand.

I’d programmed in several languages over the years and settled eventually on C, which had become the lingua franca for anyone programming on PC’s. But now I was beginning to feel that, robust and workman-like as C was, it was too inflexible, too inexpressive, to deal with something as conceptually complex as color. I still had no ideas about how a program to handle color should develop, just a growing conviction that C was getting in the way. I sought, and followed, the advice of my many friends in the AI community and I switched to LISP, which was one of the original computer languages, and which remains today the language of choice for virtually all AI applications. It meant that I had to spend several months re-writing all of AARON’s code, but it also meant that, when I had resolved the other issue, I was ready with what proved to be an infinitely preferable, infinitely more expressive, language. If programming in C is like marching, programming in Lisp is like dancing.
That other issue requires some background, both about my own approach to programming and about color itself. I’d learned programming initially on my own; but my real understanding of what programming was and what it could accomplish began when I was at the Artificial Intelligence Lab at Stanford. That was the time when the best known applications of AI were so-called Expert Systems, in which “knowledge engineers” would work with experts in various fields to try to capture their expert knowledge in computer programs. As you might guess, the areas of expertise were exclusively scientific – medical applications, predominantly – and the conventional wisdom was that one couldn’t be both knowledge engineer and expert; which was reasonable enough, pragmatically speaking, given that the graduate students in computer science who became the knowledge engineers didn’t have any medical expertise and the medical researchers had better things to do than learn programming. But I didn’t see why, apart from the pragmatics, one couldn’t wear both hats; or, indeed, that I had any choice in the matter.

So, wearing first one hat and then the other, I would approach each problem about how to have the computer do something by asking how I would do it myself.

And it worked, up to a point. But that point came with color, as it became slowly apparent to me that I didn’t know how I used color myself. Nobody can produce wonderful color by accident, of course, yet even very good colorists rarely know why they make the choices they do.

So here’s the strange thing: our brains are capable of building elaborate mental models: we can conduct complicated conversations in our heads, we can solve numerical problems in our heads, we can imagine the result of making a move in chess and we can envision and reason about form and structure; but that ability to build internal representations barely extends to color. We don’t even have an adequate vocabulary for asking questions about it.

In a word, we have only the most rudimentary color imagination. And while that hadn’t stopped me from being a pretty good colorist myself, it left me facing a brick wall with respect to modeling how I functioned as a colorist.

Then I awoke one morning with the realization that “how I did it myself” was irrelevant; it’s one thing to expect a program to do some of the things human beings do, but something entirely different to expect the program to do them in the same way that human beings do them. The way we use color is determined by our hardware, our physical apparatus, which combines that rudimentary color imagination on the one hand with excellent color discrimination, visually, on the other. Since we can barely imagine the result of putting two colors next to each other, much less an entire color scheme, we have very little choice but to proceed the way we do: in step-wise fashion, supported by visual feedback, continuously making additions and changes to a color-scheme in progress until we somehow know we’ve got it right. And the good colorists do get it right, even if they never really know how they got there and can never explain what “right” means.

Well, I finally understood, if my program didn’t have a visual system there was very little point in trying to emulate how human colorists proceed; which I suppose was just as well, since I still wouldn’t be able to articulate the hidden process that leads to getting it right. What the program did have, on the other hand – and this was hugely enhanced by the change from C to LISP -- was a remarkable ability to build and manipulate complex internal representations. If I could identify a possible goal for coloring, and articulate rules for reaching that goal, then the program should, in principal, be able to build the whole thing “in its head,” so to speak, without ever needing to see intermediate results the way we do.

At this point I need to get a bit more technical about color, and more generally about visual perception, to explain how I proceeded, and why. One of the many odd things about color, considering how much we value it, is that it actually plays a rather small role in visual perception. As anyone who can remember black and white movies will know, you don’t really need color to get 95% of what’s out there. Many males in the human population – though not females, for some reason – have some form of color blindness without ever knowing it and many animals don’t have color vision at all. They can still get around in the world, because what we’re all very good at, and rely upon predominantly, is brightness discrimination.

In fact, we have a special mechanism built in that amplifies brightness contrast, and helps us, as a result, to locate the edges of objects in the visual field more reliably than would be possible otherwise. (*** 13 ***) It’s what we call the Mach-band effect, which makes the darker color at an edge appear darker than it is and the lighter color look lighter. It’s this special function with respect to edges that makes possible the near-universal mode of representation we call outline drawing, which would be a meaningless abstraction without it, given that the visual field is essentially continuous.

That probably explains why, for the first fifteen years of AARON’s development, I limited the program to making outline drawings (*** 14 ***) and, when I added color by hand, I used it simply to fill in the outlines. The point of having AARON do its own coloring was different, however; I wanted color to become the primary organizing principle of the image. Since that was the role already occupied by the outline drawing, then the outline drawing would have to go; and then the program would have the goal of using color alone to provide enough differentiation at the edges of objects for the image to be legible.

That isn’t the whole of the story with respect to color, obviously, but it was enough to frame the first versions of AARON as colorist. Fortunately, AARON didn’t have to deal with the physical colors one buys at the art supply store, each one bringing a unique set of physical characteristics with it in addition to its color. Computer color is a curiously disembodied animal, and one simply specifies what individual colors are to be in terms of (*** 15 ***) three primary characteristics; the hue, which tells where the color is to be on the visual spectrum; the brightness –or the value, as it’s more generally called – which tells how much light energy the color should have, with black at one extreme and white at the other; and the saturation, which says how much of that total energy is to be located in how narrow a band on the spectrum – in other words, the purity of the color.

What one sees on the computer display is a function of the voltages supplied to the three electron guns that activate the red, green and blue phosphors on the screen, but the mapping from hue, saturation and value to red, green and blue is done by a program that comes with the display. AARON would have only to specify the individual colors it wanted in terms of the hue, saturation and value; and in specifying a complete color scheme it would have to provide sufficient contrast at the edges where these individual colors met to provide legibility without resorting to black outlines.

Essentially, the method I devised for the program was to produce a single aggregate score from the three variables for each color generated, adjusting those values so that the scores for neighboring colors – and thus the colors themselves -- differed enough to provide legibility. Simple, simplistic, even: but sufficient to generated a surprisingly large range of coloring effects; for example, AARON could handle the dreaded red-green combination simply by making one of them light and the other dark, or making one of them saturated and the other less so. Or it could use two colors of similar value, but with the hues sufficiently separated. (*** 16 ***) In a fairly short time I was able to see what I thought were quite respectably colored images on the screen; and, (*** 17 ***) in fact, I was able to use AARON’s coloring virtually unmodified for those images I enlarged up onto canvas and painted by hand. (*** 18 ** 19 ***)
“Quite respectably colored” was not the level of expertise I had in mind for the program, however. This stage marked the very beginning of AARON’s career as an autonomous colorist, not its culmination.

So far, so good. But while technologies are best approached with some level of expertise, the technologies themselves still need to be chosen with some care.

The urge to demystification that had resulted in my having built several generations of drawing machines and the hours I spent talking to people during exhibitions was no less strong now with respect to this new work on color and it led me this time to the conclusion -- all-too-obvious conclusion -- that I should replace the drawing machines with painting machines. (*** 20 ***)
I started on designing and building the first painting machine as soon as I saw that I had a potential solution to the fundamental color problem; which was a bit too early. And I adapted the first painting machine from one of my drawing machines; which was a bit too easy. The result of this mistiming and misjudgment was that at the same time that I was trying to eliminate outline drawing in favor of color, I was designing and building machines to make outline drawings and fill in the color, just as I had done myself with AARON’s drawings previously.

I only used these machines in a couple of exhibitions, where they made some stunning images; (*** 21 ***) and they were filmed in my studio for TV science programs like Scientific American Frontiers. (*** 22 ***) But, dramatically successful as they were, they couldn’t follow where the new work on color was leading, which was to the elimination of the black outlines. The machines were not precise enough to bring areas of wet, runny dyes to a common edge and, if I had been able to make them that precise, (*** 23 ***) the water-based dyes would run into each other and render the image quite illegible. For all the effort of building them, for all they had arms and hands able to pick up cups and brushes, remained drawing machines and drawing machines were not what I needed.

There was another reason, also, finally, for bringing this line of development to a close, bearing more directly upon my urge to make everything as transparent as possible. It was that, increasingly, I would find people referring to AARON, in conversation and in reviews, as a robot.

No, I would say, the machine you’re watching isn’t AARON. AARON is a program running in that computer over there; it’s generating the images and simply using the painting machine as its output device. And while the painting machine may look a bit more complicated than most ways of putting images onto paper, it’s no more a robot than your desktop printer is a robot. Explanations didn’t help, of course; audiences would see the machine dispensing its own colors, picking up its own brushes and washing out its own cups and conclude that if that didn’t spell ROBOT they didn’t know what did.

So, finally, I gave the final version of the painting machine to the Museum of Computing History in Silicon Valley and returned full-time to the central problem of the program’s autonomy with respect to color. I wanted a way of going directly from the program to the physical output without all the complicated and misleading intervening technology, and I found it eventually in one of the new wide-format printers that were just then coming onto the market. (*** 24 ***)
These printers are decidedly not scaled-up, user-friendly, desk-top printers that do their job without regard to what the user wants; they offer a great deal of control over a wide range of properties – color balance, contrast, different papers – to give the user what he wants. Consequently, they require a good deal of expertise to get the best results and, in that sense, they have more in common with the retinal scanner that with the digital camera. To give an idea of how much is required, I should tell you that it took me about a year to get the hang of the thing and at the end of that year I destroyed all the accumulated output and started over.

But, like any other acquired expertise, the effort of acquiring it was more than repaid by the result. The machine I have uses archival pigment inks of astonishing brilliance; (25 1) color unlike anything I’ve ever been able to get from oil paint. This may be the first major advance in color technology since the industrial revolution and I think I have some idea how the impressionists felt when they first saw the new, industrially-produced metal oxide colors.

(26 2) I don’t make physical objects, paintings, these days; mostly what I do is work on the program itself. When I do decide it’s time to produce some prints (27 3) I start the program running before I go to bed at night and then I have fifty or sixty original images to review the following morning. In the (28 4) early days of computer art, many people thought that the advantage of the computer is that one could make thousands of images and one or two of them would be bound to be interesting. (29 5) I never subscribed to that view then – if they weren’t all interesting, I thought, then none of them are – and I don’t subscribe to it now. (30 6) AARON has a remarkable high hit-rate, with almost every one of those images worth saving. But there would be no point in saving them all even if I could afford it, and I have to decide which ones will best survive the transition to paper and how big they should be. (31 7) That’s something I have to do myself because it involves specialized experiential knowledge, a special kind of expertise, which AARON doesn’t yet have; and, indeed, may never have. (32 8)
In the title of this talk, I referred to AARON as an apprentice, an assistant, rather than as a fully autonomous artist. (33 9) It’s a remarkably able and talented assistant, to be sure, but if it can’t decide for itself what it wants to print – and if, at a much deeper level, it can’t decide to reconsider what I’ve told it art IS – then, clearly, it hasn’t yet achieved anything like full autonomy.

Am I concluding, then, that the sorcerer’s apprentice, AARON-as-assistant, may be an appropriate model for the production of art in the future?

No, I’m not; and for two reasons.

For one thing, I’m, not sure that the term “full autonomy” means very much. I can hardly expect AARON suddenly to come up with images for which I have absolutely no responsibility. But there’s no question that it makes images I couldn’t have made myself by any other means. And if I look at the images in detail I find lots of things happening that I would never have imagined, let alone programmed for. So, even at this early stage, AARON is exhibiting the property of emergence, which may reasonably be regarded as a requirement for autonomous creative behavior.

And, secondly, and as I’ve tried to show, nothing is guaranteed to under-estimate the magnitude and speed of coming changes as much as extrapolating from the state of technology and the state of the culture as we see them today. Of course I can look back now and see that the ideas that have sustained half a lifetime of work with computing predated my first encounter with computers by several years; but I could never have predicted in 1965 that I would be programming my first computer in 1968, or, based upon the state of the field and the state of my own knowledge in 1968, that today I would be discussing the possibility of a computer program functioning as a fully autonomous artist.

Given how much my own life and work have changed in the thirty-six years since I left London, how much further should I expect them to change were I able to continue for another thirty-six? The capacity of the computer will almost certainly exceed the capacity of the human brain at some time in the next two or three decades and there are compelling reasons to suppose that artificial intelligence will exceed human intelligence also. What can we assume, after that, about whether some future AARON will remain the apprentice of some future Harold Cohen, or whether it will move into areas of art-making where that future Harold Cohen will be unable to follow it?

PAGE
- 1 -

