Color, Simply.
October 2006

A very long time ago, when I was a visiting scholar at Stanford’s AI Lab, I remarked to a colleague there that I was a bit stuck on my work and didn’t know how to proceed. “Well,” he said. “You declare what you’ve done to be a success and you move on to something else.” I was shocked. But then I realized that he was offering a project-oriented view not unreasonable for an educational establishment. If the goal is to turn out a well-trained individual with a PhD in a reasonable time, after all, the last thing you want the individual to have is an open-ended project.

But I wasn’t there to get a PhD. Progress in the arts is a bit like stumbling in the dark towards some strongly-felt but ill-perceived destination, and it isn’t to be measured in successfully completed projects. I hoped that being at Stanford would prove to be one more step in my own forward movement as an artist, but if you have some idea what computing was like thirty years ago you’ll recognize that it was a long-shot at best. All the same, there was no question of declaring my program to be a success and moving on to something else; I was committed to doing what I was doing, win or lose, for reasons deeply embedded in my life and work up to that time.
I was trying to write a program that could function as an artist. Not an artist’s tool, a kind of proto-photoshop, that I could use to make art – after twenty years as a professional artist I already knew how to make art – but as an autonomous entity capable of generating original artworks; as autonomously, at least, as I could figure out how to make it. I’ve been trying ever since. (1) Autonomy isn’t an absolute, of course, but given that AARON – that’s the name of the program I started then – makes most of its images at night, while I’m asleep,  (2) the program is obviously more autonomous than it was. But its autonomy doesn’t extend to exercising judgment about what it’s doing, (3) and exercising judgment myself the next morning isn’t easy. Which of the hundred or so images should I print and which should I discard? They’re all good enough to print.  (4) You’ll have to take my word on that, but the one thing you can easily see for yourself is that AARON is now a remarkable colorist – in fact, it’s a much stronger and a much more inventive colorist than I ever was myself. (5)
Well, that’s surely the least likely area of expertise for a computer program, especially one without a visual system. There’s nothing more fundamentally visual than color for the human animal, in the precise sense that color is not a property of the real world, it’s a property of the perceptual system that interprets the various wavelengths and amplitudes of the light from the real world. Animals that don’t have the right kind of retina don’t see color and a program without any kind of retina doesn’t see anything.

Curiously enough, our own relationship to color is quite problematic, because, while we can certainly see it and respond to it, we’re almost incapable of imagining it. Well, you might say, that’s because we’re mostly not experts. But, no; even expert colorists can’t imagine complex color relationships. No one has ever proceeded by constructing an internal representation of a complex color schem and then telling someone else how to execute it. He can’t really know what the effect of a color choice will be until he sees it on the canvas, and consequently proceeds stepwise, typically, correcting as he goes. So visual feedback is central to what the human colorist does. But, as I said, AARON has no visual system. No visual system, no visual feedback. No feedback, no basis for continuous correction. 
I got a handle on the problem of color about twenty years ago, after several years of frustrating lack of insight, when it became clear to me that if AARON didn’t have the hardware upon which my own expertise rested, than the standard expert system approach of emulating my own expertise was a non-starter. I needed to build a system based on the resources AARON did have, which included, if I could devise a way of representing individual  colors, an entirely un-human ability to build and maintain an internal model of arbitrarily complex color schema. But how to generate those colors? I needed to devise a set of rules flexible enough and robust enough to apply across the full range of unpredictable compositions that the program was capable of generating. 
That rule-based coloring served AARON very well for the next twenty years, but that isn’t what I want to talk about – it has been adequately described in several published papers that can be got off the web. Enough to say that in those twenty years it grew to be a very long and extremely detailed production system; so long and detailed, finally, that introducing new rules, or making changes in the existing rules without breaking something was becoming more and more difficult. 

And a few months ago I scrapped the entire system in favor of a remarkably simple algorithm that not only performed at least as well as its predecessor, but opened up a much wider range of coloring strategies than had been possible before. It’s that algorithmic system I want to talk about. It really is simple; but its structure and development are deeply embedded in color technology, and understanding why it works as well as it does requires some background. 
Let me start, then, with a brief review of what we know about color and about the various ways it can be represented and specified.
To begin with, as I said, color doesn’t exist in the physical world. What exists in the physical world is light, which varies across the visual field in its wavelength and its amplitude. Color is what we see; the sensations generated by the retina in response to the varying wavelength and amplitude of the light. (6) It follows, then, that it requires only three variables – hue, brightness and saturation -- to fully describe a color sample, and we can represent them all on a graph that shows the distribution of the wavelengths against their amplitudes. The hue is where the peak of the graph falls on the visible spectrum, while the saturation is the bandwidth of the peak;  how much of the available energy falls within how narrow a band. 

And brightness – where the sample would fall on a scale from black to white, how it would be recorded on black and white film, roughly speaking, how it would be perceived by an animal without color vision -- is simply the total energy of the sample; it’s represented here by the area under the curve. For those of you who can remember black-and-white movies or who still use black and white film in your prehistoric cameras, it should be clear that the brightness component provides almost all the information we need about the world, and from a perceptual standpoint it remains far more important than either hue or saturation, even when we’re responding to the colors we see.
In fact, it would seem that whatever practical purposes were served by color vision in earlier times, it serves a predominantly aesthetic function for modern humans. And for the artist wishing to capitalize on that function hue, brightness and saturation are, necessarily, the terms in which we want to build color relationships. But we can’t manipulate these terms directly, and what we can manipulate depends upon the medium. (7) The painter has a wide range of differently-colored physical materials to be squeezed out of tubes and mixed together. The computer artist uses viewing devices (8) of one sort or another – CRT, LCD or plasma panels -- that generate tiny triads of red, blue and green dots which then activate the receptors in the retina, fusing to produce different colors, depending upon the relative settings of the three dots
So you might say that the primary materials for the painter are the variously-colored pigments in the tubes of paint, while the primary materials for the computer artist are red, green and blue. Could the painter manage if he had only red, green and blue paint? Certainly not: the three suffice for the display because mixing them is additive – as each dot in the triad is activated it adds to the total energy of that triad. Mixing paint is subtractive; physical materials act as filters, and adding another filter reduces the total energy of the mixture. (9) So while red and green light mix additively to produce yellow, red and green paint mix subtractively to produce (10) … well, it’s still yellow, but it’s so degraded that we call it something else.
Now, when I started to write the coloring rules for AARON I accepted that my primary materials were determined by the output device – the screen – so the output side of each rule would have to be an RGB specification that satisfied the desired relationship of the three primary characteristics – hue, brightness and saturation -- of the color within the color scheme as a whole. As you may imagine, finding two RGB mixtures that satisfied the desired relationship of all three characteristics was non-trivial – indeed, not always possible -- and initially writing the rules involved a great deal of trial and error. Of course, my own expertise with the RGB system had been developing as I continued to work with it; but so were the demands made on that expertise by AARON’s increasingly complex images. I judged it to be time for a change.
Everything comes down to red, green and blue in any electronic display, but as a way of specifying what is to be displayed RGB isn’t the only game in town.
My first step in a better direction, I thought, would be to adopt the alternative HLS system, which allows color to be specified in terms of its hue, lightness and saturation and takes care internally of the conversion to the unavoidable red, green and blue. That sounded like exactly what I needed; and it almost was. It was only when I started to rewrite AARON’s coloring rules to provide HLS output, that I realized that the lightness component in HLS wasn’t the same as my notion of brightness.  (11) Here’s a physical model that makes clear what HLS actually means and why lightness and brightness aren’t the same thing.

As you see, you can think of HLS as a system in which a filter of some hue sits between a light source and the viewer. Lightness is a measure of the energy of the light source and saturation is the number of colored transparencies making up the filter. In my hue/brightness/saturation model, brightness represents the level of light energy arriving at the viewer’s retina, after it has passed through the filter. In the HLS model lightness is the available energy of the light source itself, before its brightness is reduced by the filter. 

The difference wasn’t critical; after all, the behavior of light doesn’t change because one adopts a new way of describing it, but it took me a while to develop a sufficiently intuitive grasp of what the HLS descriptors actually represent to feel comfortable with it. It was obvious that lightness and saturation couldn’t be considered separately, since evidently they were both involved in determining brightness,  but much less obvious how the resultant perceived color would be affected by different combined values of lightness and saturation. It took me a while to develop a sense of how that would work, and it was critical
As things turned out I didn’t rewrite the entire rule-base, as I’d planned, because long before I’d finished the job I started to suspect that there may be a quite different way of going about things. To some degree it was driven by the growing realization that whatever expert knowledge I was able to supply, it was available to the program only implicitly, embedded as it was in the rules I provided. I thought that for the program to move to a higher level of autonomy it should have that knowledge available in explicit form, and, indeed, as I said in the abstract of this talk, the first version of the new system involved providing some of that knowledge. 
For example; (12) if you look closely at any of AARON’s images you’ll find that every single patch of color has three components; there’s the main color, and then there are two variants of that color which are used for the edges of the form, offset from it to some specifiable degree in any or all of the three primary characteristics. Rather than specifying the actual colors to be used – as I’d done with the RGB-based system – I thought it should be possible to tell the program that under particular circumstances it should shift the hue barely perceptibly for part of the edge. It is possible, provided of course that the program knows what “barely perceptibly” means. 
Well, what does it mean? Assuming that the spectrum is approximated by 360 spectral colors in a circular array, (13) the minimal perceptual shift for any color will be the number of steps you need to take, clockwise or counter-clockwise, before you begin to note a difference. That turns out to be anything but constant as you move around the circle; (14) you may not be able to distinguish between two colors separated by two or three steps in one part, while the change between two adjacent colors in another part sticks out like a sore thumb. 
As you may imagine, assembling the minimal perceptual shift data was no fun. It was a critical issue in the design of the first algorithmic version of the program, as I announced in the abstract for this talk. But I’m up to version three now and it doesn’t really figure as much of an issue any longer. What has emerged as the central driving force behind the first version, though I could hardly have expressed it at the time, was the dawning suspicion that one could only go so far in developing a color scheme by picking individual colors because a color scheme is characterized by the relationships between the colors. I was beginning to think that in any truly dynamic color scheme there had to be certain constancies, however elusive, in those relationships, and consequently that designing one would require focus upon establishing and maintaining those constancies.
The first version of the new system, then, involved generating a gamut of individual colors by providing the appropriate constancies in their hue, lightness and saturation components. 

Hues were determined by subject matter. (15) AARON’s recent work tends to teeter on an edge between figuration and abstraction, but all of it is, in fact, based upon plant growth. So, whatever hue the program chose for leaves, it should apply to all the leaves of any given tree. The hue itself didn’t matter – after all, naturalistic coloring was never my goal – but the distances between the hues for different elements – flowers, tendrils, branches and so on – did matter, (16) and I settled on an additive series shifted to a random starting point on the color circle. In this way every image would have the same spacing but no two of them would have the same colors. 

For the lightnesses and saturations to be associated with each of these hues, the program simply generated two lists of random values. These were then the only values that could be used in coloring an image. (17) As each plant element came up for coloring its hue would be predetermined and its lightness and hue drawn randomly from the respective list of values.  
If there are seven object-related hues allocated to an image, then, and seven values in each of the two lists, each hue can appear in any of forty-nine variants, and a color scheme as a whole would involve almost three hundred and fifty distinct colors if there were that many objects to color. So, although all the leaves on a tree would have the same hue, no two of them were likely to have the same color, just as no two leaves on a real tree under real lighting conditions would appear to be exactly the same color. (18) Evidently limiting the lightness and saturation to a small set of fixed values provides the required constancies in the color scheme as a whole, though the underlying structure is anything but evident.
It could hardly be simpler. It’s so simple it would be laughable but for the fact that these half-dozen lines of code worked at least as well as a heavy-weight expert system that had been refined continuously for more than a decade. 
But what do I mean when I say that it worked at least as well? It may not be entirely obvious to people in the engineering disciplines, but in the art-making game we don’t think about finding the “best” solution to a problem; we think about generating the widest possible range of excellent solutions. One limitation of that range under the old system of hand-made rgb rules was that it almost never produced grays. To generate grays in the rgb system you need close-to-equal amounts of red, green and blue, and I always found that difficult to do while satisfying other requirements. 

Now if you look at my HLS model (19), you’ll see that zero saturation means literally that no hue is present, and you have a neutral gray controlled entirely by the lightness. With the new algorithm, then, the inclusion of variously neutral grays in a color scheme simply depended on what numbers were in the saturation list and which ones were selected for individual colors. And it quickly became apparent that from the same set of numbers the algorithm could generate a much wider range of color schemes than its predecessor could; not only schema (20) with both very pure and very gray colors, but also some strange, (21) almost monochromatic, compositions quite unlike anything AARON had ever generated. 
So far, so good. A much extended range, generated simply by the numbers in a couple of lists. But just where on that range a particular image would fall was random, just as the numbers were. I thought the program should have some degree of control in the matter; that it should be able to choose where on the range it wanted to operate. 

By this time I had a more developed sense of how the various settings for lightness and saturation determine the kind of color they’ll generate. (22) At one end, with both lightness and saturation close to their maximum values, we get relatively pure colors. At the other end, when both of them have very low values it means there is very little light and very little hue, so we have essentially dark grays. In between these extremes, (23) we can increase the lightness of the grays by increasing the lightness while keeping the saturation low. And we can decreasing the grayness by leaving the lightness alone and increasing the saturation. In the middle, we have both lightness and saturation somewhere in the middle of their range of values and we get a palette of muted colors; not too saturated, not too light and not too dark.

So, while picking random values for lightness and saturation generates a lot of different coloring possibilities, controlling that range means controlling the ratios of those values. 
So let’s suppose, now, that instead of simply using pre-selected random numbers for lightness and saturation, we distinguish between three ranges of values for each of them; (24) the high-value set may contain random numbers between .85 and 1.0, for example, the middle range between .5 and .7 and the low range between .2 and .4.  Then we have (25) nine different ways of pairing the ranges; nine combinations of lightness and saturation ranges, each of which will give rise to a distinct type of color scheme.
Now, we’re unlikely to use all nine of these combinations in a single image, and what we certainly don’t want is a composition controlled by just one of them. An image comprised of exclusively spectral colors is apt to look crude rather than vivid, just as an exclusively light color scheme will look weak rather than subtle. The vividness of a color is most affective in the presence of more muted colors, just as light colors need some dark colors to focus attention on their lightness. 
So we probably want two or three of these range-pairs, but we need to control how much each of them gets used within a single image. And if we want to get the widest gamut of outcomes from any particular set of combinations, we don’t want the program to apply a low-low combination every fourth time, for instance, and a high-high combination for the rest of the time. Rather, we want the program to specify only the average frequencies with which each of them is chosen, leaving it to chance to determine which will actually be used on any particular occasion.

Actually, that has always been AARON’s standard way of making choices, calling a preference function like this – (26) (prefs 60 ‘a’ 30 ‘b’ 10 ‘c’) – that guarantees only a statistical likelihood that ‘a’ will be returned sixty percent of the time; (that is, ‘a’ will be returned if a random number between 0 and 100 is less than 60). The new version, using essentially the same strategy to select values from pre-determined range combinations, looks like this:- (27) (4 'hh 3 'hl 2 'lh) where the first character of each range symbol indicated the lightness range and the second indicates the saturation range. So, for example, if the ‘hl range is selected, the lightness will be randomly selected from its high range and the saturation from its low range.
On, then, to the second version of the algorithm. Once again, it has two phases, a preamble in which the various controls are set up, and the development, in which those controls are applied element by element until the image is complete.
As before, the first step in the preamble deals with the spacing of hues; a sequence of numbers is randomly located somewhere on the 360-point circle. And as before, the resultant hues are assigned to the different elements – leaves, tendrils and so on -- of the composition. (I should mention, though, that in the course of exercising this version I found that picking the seven hues randomly didn’t produce any discernable difference in the output and the fixed-sequence strategy was dropped.)

Three ranges of randomly selected values are then assigned to lightness and to saturation, one each for high, medium and low values. (28) As with the first version, these then constitute the only values permitted for the entire composition; but now the selection is further restricted to the specified ranges. 
The final step in the preamble is to compose a preference script, which will determine subsequently how those ranges get selected. (29) A script like this one – 4 'hh 3 'hl 2 'lh  – specifies that in the subsequent development stage, 4/9ths of the time both lightness and saturation should use values from their high ranges; a third of the time lightness should be high and saturation low; and 2/9ths of the time lightness should be low and saturation high. Again, though, let me stress that 4/9ths, 1/3rd and 2/9ths represent preferences, not absolutes; but given the  large number of selections required in a complex image I assumed that the distribution of ranges would average out quite close to the preferences. 
Well, in practice they weren’t as close as I thought they would be. But, more to the point, the intent of the algorithm wasn’t really to control how frequently the various range-combinations would be selected, but rather to control the distribution of the different ranges of lightness and saturation within the physical structure of the image; the amount of space, that is, that would accrue to each one. That’s quite different, of course, and in making its preference-based selections the program was indifferent to whether I was about to color a very large leaf or a very thin branch. 
That led, then, to the most recent version of the algorithm. It still doesn’t concern itself with the size of an element when it’s selecting a color for it, but now it keeps track of how much space actually gets used by each of the range-pairs in the coloring process. (30) Eighty percent of the time it uses the regular frequency-based selection for the next area to be colored, but every fifth time it compares the use records of all of the active range-pairs to the usage called for in the preference script, and the range-pair that has fallen the furthest behind its preference replaces the frequency-based selection for the next area to be colored.
And here the strategy works surprisingly well, with usage remaining remarkably close to the preferences (31); which also means that the kind of color produced is much more predictably linked to the preference script that generated it. A simple change to a simple algorithm for a significant improvement. But, of course, you will already have spotted the fact that what I’ve presented as a simple change of strategy has actually changed the very nature of the algorithm in a fundamental way. Indeed, I’m not even sure whether the term ‘algorithm’ properly applies to programs that are required to sample and evaluate data from an unpredictably developing domain in order to keep them on track.
Well, that’s pretty much the whole story to date. At least, it’s the whole story respect to color; I need hardly add that it’s only one part of the larger story of how AARON generates its images, and many factors I haven’t even mentioned profoundly affect the way those images are read; even affect how the color is perceived. You may recall, for example, that I mentioned earlier that our dealings with the visual world rest predominantly upon brightness perception. One corollary of that dominance is that color inevitably slips into a secondary role as soon as the viewer recognizes an image to be representational. In the extreme case offered by portraiture color takes on a merely descriptive role identifying the sitter.
That loss of centrality isn’t so big a problem for the current program. After all, it teeters on the edge between representation and abstraction precisely to avoid it. Even so, there’s a distinct difference in reading when the branching structure of the tree is too much in evidence, compared to those cases where the branches are almost entirely hidden. Similar issues arise with respect to the maximum size the program allows for any single element -- leaf, flower, whatever – and also by how much space it decides to allocate to each individual tree, thus controlling how fully, or how sparsely, the frame is to be filled. Even the proportions of the framing rectangle plays its part in determining how the viewer identifies what he sees and how he prioritizes his perception of its elements.

There must be about a dozen variables that together constitute full control over the generation of AARON’s images, aside from the new group that now controls its color choices. But, lest you should suppose that the variety of output I’ve shown you depends upon issues I haven’t even mentioned, I need to emphasis that they have not. All controls other than those directly involved in the new algorithm – with the small exception of some variation in the frame proportions -- have been held constant throughout its entire development.
To conclude, here are a few images made by the program a few nights ago. It made a hundred and twenty-nine images in the course of the night and was still at it when I interrupted the next morning. Then it took me about the same amount of time to examine all the images and discard most of them and I was quite unable to get the remaining number down below thirty, even though I knew that only a few of those thirty would ever get printed (35). If, as I’ve said, the goal in the arts is to generate a rich output of excellent work, not to find the single “best” solution to some problem, then I clearly have no reason for discomfort on that score. (36)
From the standpoint of increasing autonomy, there are reasons for some residual discomfort, however, in the fact that I provided AARON’s preference script, just as I provided the crucial limits within which the values for the three ranges for lightness and saturation are randomly set.

Clearly, these are not the only possibilities; there is a very large number of possible scripts, and I could spend a great deal of time investigating just a few of them. I think it’s time I got some help from AARON. Having it generate new scripts is easy enough, obviously, but that won’t help much unless I can tell the program how to assess the effect of those scripts upon its own output. 
I haven’t figured that out yet, just as I haven’t yet figured out how AARON could assess the hundred images it makes in the night and tell me which of them are most worth printing. 
But I’m working on it.
