A little while ago I was reading a Scientific American article, in which the author defined the algorithmicity of a program as the relationship between the size of its output and the size of the most compact description of that output. Not surprisingly, the most compact description often turns out to be the algorithm – the program -- itself. That’s interesting, I thought, we don’t get that objective about algorithms in the arts; I wonder how my own program (** 1 **) stacks up in terms of its algorithmicity. Not very, as it turned out. AARON is the lisp program that generated the images you see here (** 2 **) and it’s executable version came in at about 1 Mbyte. Of course, the size of its output depends upon both the dimensions and the resolution of the screen image, so this was all a bit arbitrary, but I found that my own bitmaps ran around five Mbytes, which gave a ratio of 1:5, which didn’t seem wonderfully algorithmic.
But then I thought that perhaps I was selling AARON short; after all, AARON isn’t the description of a single image. If I start the program running before I turn in for the night, (** 3 4 5 **) I’ll have about a hundred different images to review the next morning, all original and all generated with no input and no user-controlled modification to account for the differences between one image and the next. That’s effectively a ratio of 1:infinity, which must surely be a world record. Well, not quite. Any program that uses a random number generator can generate infinitely many different outputs. How about a little program that endlessly generates differently proportioned rectangles, for example? Would that have the same algorithmicity as AARON? If so, I don’t see that algorithmicity is measuring anything very interesting.
On this side of the cultural divide, an algorithm is simply a piece of code that does something useful. But when we talk about a program being “algorithmic,” we don’t mean it uses algorithms; we mean that the program doesn’t require human interaction to do its job, as opposed to programs that don’t do anything without human interaction and aren’t intended to. We mean the difference between AARON and Photoshop, for example. We mean something about the program’s autonomy. If I were defining algorithmicity it would be as a measure of that autonomy, not as an absolute, but relative to the range and the complexity of the program’s output. That would be interesting, if one could only figure out how to measure it.
No doubt we would all like to think that we can make continuous progress towards greater autonomy for our programs. Based upon my own experience with my own program, however, I’m going to propose that there are perhaps four distinct levels in that progression, each of them involving its own set of requirements to be satisfied and its own set of algorithmic characteristics to satisfy them. And in order to capture the importance of range and complexity to the progression, I want to characterize those four levels in terms of what the program seeks to control, and the nature of that control, at each level.
(** 6 **)

1. control over manufacture

2. control over strategy
3. control over purpose

4. control over potential

Programs at the first level are typically knowledge-based, with some body of expert knowledge encapsulated, implicitly, in a set of production rules comprehensive enough to navigate the changing conditions of the output as it develops.
At the second level we should expect the program to know explicitly what goal it is supposed to achieve, and to monitor its own progress towards that goal. The expert will still supply rules, but they will be rules for modifying strategies on the fly, not for defining all relevant strategies in advance.
To be at the third level the program must have accumulated a sufficient body of experience that it may find reason to modify the goals it has been given, and must have developed the ability to modify them if it does.
I can’t pretend to any insight into what would be required to attain the fourth level, where we might expect to find the program able to question the entire system of belief that gave rise to its goals – after all, few human beings attain it. I don’t think it’s very far-fetched, but it’s almost certainly very far off. To keep things in perspective, (** 7 **) my own program has had more than thirty years of continuous development and has only recently made the transition from the first level to the second. It’s that transition I want to talk about today, and I want to focus on what was required, in terms of changes to AARON’s algorithmic structure, to effect it.
Let me begin by reviewing the program’s principal limitation at the lowest level. It is the fact that whatever expert knowledge is embodied in a program – be it knowledge of drawing, coloring, musical structure or whatever – that knowledge is implicit in the expert’s rules; it is never made available to the program in explicit form. Of course, knowledge about the expert’s purpose is not often explicit for the expert artist, either. He may have a sense of where his purpose is and even some intuition about how to get there, but he can rarely say what he wants in words, much less in programming constructs.

The result is that a program at the lowest level knows how to do something, but one can hardly say it knows what it is doing, and it certainly doesn’t know why it is doing it. In consequence, the most fundamental requirement for the transition is almost certainly a change from the implicit to the explicit representation of knowledge.

I need to explain that the particular body of knowledge I’m concerned with here relates to color; AARON’s use of color, which has been my principal focus for several years now. The configurational aspects of its subject matter – which is based entirely on plant growth – serve to provide a format for the program’s complex use of color, and that hasn’t changed much, either over the past couple of years or in the recent transition.
At the first level, then, AARON was a typical rule-based program for which I wrote the coloring rules, and my own knowledge of color advanced considerably over the years as a direct result of doing so. As a result, the rules themselves became increasingly complex and detailed. So complex, in fact, that it was the increasing difficulty of modifying one part of the rule base without screwing things up in another part that persuaded me finally to dispense with the rule base altogether.

Well, if AARON could no longer satisfy implicit goals by following my rules, then the first order of business was to make explicit the goals the rules had been intended to serve. Typically, I had never tried to say what those goals were, but I thought I could find out by examining which images of AARON’s prodigious output I had chosen to keep and to print, to see what they had in common. I concluded that a principal goal had been to achieve a kind of visual excitement, a changing perceptual activation across the surface of the image. I couldn’t get any closer; it’s hard, even now, to say exactly what that means. I co-opted “pizzazz” as a label, as a term appropriate for being adequately expressive and similarly ill-defined: and, as a first approximation, I pinned it down as a function of color and brightness relationships and, to a lesser extent, the changing relationships of the properties of the individual shapes that populate the image.
AARON was thus able to assign a pizzazz value to the state of the image at any point. It would begin each image by setting a desired pizzazz level, then it would continuously monitor the pizzazz of the developing image in order to stay on track. The difference between these two images (** 8 9 **) , which were made on the same night, result entirely from having different initial desired pizzazz settings. Evidently my pizzazz modality worked reasonably well.
The most critical element in this new modality is, of course, the monitoring,
Now, obviously, a program can’t monitor what it’s doing in the same way that the human artist can. For the human artist, the developing image – the entire visual world, for that matter -- is presented as a huge array of undifferentiated visual data and he has to decide on the fly what to pay attention to. Since AARON has no visual system, it can monitor its own output only if that output has been continuously recorded as data it is able to recognize. Hopefully, that will be the data that contributes most decisively towards its goals, since it effectively determines what the program should be paying attention to. And the form in which it is recorded and monitored is determined, necessarily, by what the program knows. It can only make decisions about coloring, for example, in terms of how color is represented, explicitly, within the program itself.
That requirement led to the second major change.

The output of AARON’s earlier rules had always been color specifications in rgb format; that being the “native” mode of electronic devices, like computer displays, which manipulate these three primaries directly. If I was able to write the rules in that way, I realize now, it can only have been a result of years of trial-and-error experience, because it certainly is not the native mode for thinking about color.
The most “thinkable” and the most useful description of a color is given, not by the three primaries that are mixed to produce it, but by its three primary characteristics (** 10 **) : its hue, which says where it’s located on the visual spectrum; its brightness, which says how much energy is present in the color, and the purity, which describes its energy profile; the proportion of the total energy that falls within the relatively narrow peak. For human cognition, brightness is by far the most important of these three. We find our way around the world predominantly through brightness discrimination; and, of course, for most other animals that have no color vision, brightness discrimination is all there is.
Fortunately, there’s an alternative to rgb mode in common use; a mode that specifies colors by their hue, lightness and saturation. That isn’t what you see here, because lightness is not, in fact, the same as brightness; in this mode, brightness depends upon both lightness and saturation. That is, if you think of a color as being at “full-strength” with both lightness and saturation at their maximum values, then you can make a darker variant by reducing the lightness, but to make a lighter variant you have to reduce the saturation.
(That’s all a bit counter-intuitive and confusing, but it becomes clear if you think of lightness (** 11 **) as belonging to a light source and saturation as the number of sheets of colored film through which you view the light source. Obviously, you can only get closer to the brightness of the source by removing some of the filters – that is, reducing the saturation.)
Still, switching from rgb to hls did make it possible to have the program think about color, and one can calculate the all-important brightness from the hue, lightness and saturation. However, the need for explicit knowledge quickly became apparent. The program can’t make a color a little redder than another, for example, or a little more green, unless it knows how much is a little, and how much is a little is by no means constant across the spectrum. If a color circle based upon the red, green and blue primaries is divided into 360 equally spaced mixtures, (** 12 **) then two neighboring positions will be perceptually distinct in one part of the circle while you can move ten or twelve positions in another part without seeing any appreciable change.
The result was that I had to generate a great deal of data about how colors on the screen behaved relative to their hue, lightness and saturation. This slide was generated, in fact, in the process of accumulating that data. Once that knowledge had been made explicit, then the program was able to make coloring decisions involving otherwise vague concepts like “a little redder” or “a little less saturated.” That had its effect on the production side; on the monitoring side the program still needed a more inclusive representation of color difference and the part in played in estimating the current pizzazz; a metric of color difference that encapsulated all the program knew about its individual colors.

It generates that metric now by mapping colors (** 13 **) into a three dimensional space – the angle around a central axis being given by the position of the color on the 360-point color circle, the distance from the center being given by the saturation and the vertical distance representing the calculated brightness. The difference between any two colors can be represented quite simply by the distance between their positions in 3-space, and summing the distances between every color and every other color in the developing image then provided a more expressive assessment of its pizzazz.
To be realistic, however, color isn’t all there is and it doesn’t have an independent existence. As soon as an area of color has a boundary – and it always does – it becomes a property of that area. It’s an adjective rather than a noun, and it is expressive only in the context to which it belongs. Which, I realized, meant that the ongoing assessment of pizzazz in the developing image could be adequate only if it considered color in relation to what was being colored. That requirement prompted the biggest change of all to the way the program was organized; providing it with a data-structure that could record the use of color within the unpredictably changing and infinitely various environment of the developing image.

The current version of that data-structure was arrived at by linking three different data-structures, which you might think of as representing content delineation, color and spatial distribution (** 14 **).
The first of these already existed, in the lowest-level version of the program, as a shallow hierarchical record of what elements were being added – tree, branch, cluster, leaf and so on. (** 15 **) But, in an image, those elements rarely occur as complete forms. Typically, they’re occluded by other elements, and appear as separate patches, so the complete element is frequently identified only by the fact that all its patches have the same color, and that color isn’t used for anything else. Color use needed to be assessed in relation to what could be seen of an element, not to the whole element; and consequently the existing hierarchical structure had to be extended one level further (** 16 **) to list the visible subforms belonging to each element.
Before coloring begins, the program assigns prototypical colors (** 17 **) to the various elements -- leaves, branches, whatever – but these colors are not used. The colors that do get used are variants of those prototypes, which get generated by the program as it strives to keep on track for the desired pizzazz. These variants, specified as hls triples, are listed in the second of the three component structures (** 18 **). Since a leaf will be the same color in every one of its subforms, all these subforms point to the same variant, while the color variant itself keeps a list of pointers to the subforms that use it.
The third part of the data-structure had to address one of the trickiest questions of all, because to be more fully expressive, I realized, monitoring had to take account of where things were happening in the image. If a human painter tells you “It’s getting pretty complex over there,” and points, you will have a good idea what he means. The program now has its own measures of complexity, but finding a way of saying “over there” in program-comprehensible terms is quite remarkably difficult.
Currently I’m using what I think of as a crude approximation to a geometry I can only imagine. The image is simply mapped onto a coarse matrix as it develops, (** 19 **) and each matrix cell maintains a list of pointers to the subforms that come to occupy it, along with data about how much of the cell each subform occupies. Since the subforms are linked to the color structure, the program now has access to a great deal of information about the activity in the cell it’s considering to be “over there”.
Every time the program has to make a coloring decision – which is to say every time it embarks on a new leaf or a new flower – it locates the matrix cell where the element’s center of gravity falls – that’s another approximation -- and it generates a score for that cell and for some number of layers of cells surrounding it. In this way it is able to assign a more precise value to the current pizzazz in the vicinity of the new element, as well as its more general assessment of the image as whole. And by comparing those values to the desired pizzazz, it is able to generate an appropriately modified instance of the prototypical color for the next element.

I’ve said nothing about how it generates that instance, just as I’ve said nothing about the wealth of other information contained in the data structures, or about

the various configurational factors – the wiggliness of the subforms, for example -- that go into the overall assessment of pizzazz, or the difficult question of weighting all these factors. In fact, I haven’t done much more than scratch the surface in this short talk. But rather than trying to squeeze in a few more details, I think I’d like to conclude with what little I can guess about the program’s future transition to the third level of autonomy.
Actually, that level has been a goal for a very long time, because for a very long time I’ve been uncomfortable with AARON’s inability to learn from the many thousands of original artworks it has created. I’ve had no idea how to implement learning, though. I knew that it must imply long-term memory; but I never saw my way clear to providing that long term memory, principally because I never knew what ought to go into it, beyond recognizing that it had to be information the program could review and use in making new images. (** 20 **)
At the second level, now, I do know what the program uses in making new images, and while its use of that information is currently limited to the image in hand, there is no reason why the program cannot commit it to long term memory for future use. In principle, it could retain a rather full history of the decisions that went into the making of each image.

I said that at the third level the program must have accumulated a sufficient body of experience to enable the modification of its goals, so, clearly, retaining that history would be a fundamental requirement. Some part of the path to the third level appears to be defined, then, though not necessarily easily traveled.
I’m hoping it won’t take another thirty years, because the first job I have planned for AARON, if and when it reaches that level, is to take over the burden of deciding which of a hundred images to retain and which to discard every morning.
PAGE
7

